

Theme 4 socio-economic benefits

Job creation in Europe from Ocean Energy

Bakr Bahaj and William Batten

Sustainable Energy Research Group School of Civil Engineering and the Environment University of Southampton, Southampton SO17 1BJ, UK

www.energy.soton.ac.uk

Introduction Growth rates Costs Employment

Conclusion

Introduction

- In order to predict future employment
 - Expected growth rates
 - Installation costs
 - Employment multipliers based on sector
- All of the above are combination of best guess
 - What you need to believe

1 TW of Wind by 2020

Introduction Growth rates Costs Employment

Conclusion

- If 1TW is possible by 2020 exponential growth faster than the current is required.
- Installation cost of just 512 Euro/kW

WIND FORCE 12 SUMMARY RESULTS IN 2020

Total MW installed	1,254,030
Annual MW installed	158,728
TWh generated to meet 12% global demand	3,054
Co ₂ reduction (annual million tonnes)	1,832
Co ₂ reduction (cumulative million tonnes)	10,771
Total investment per annum	€80 billion
Total job years	2.3 million
Installation costs in 2020	€512/kW
Electricity generation costs in 2020	€2.45cents/kWh

Introduction Growth rates Costs Employment

Conclusion

EWEA targets

In 1991 EWEA set a target to install 4,000 MW of wind in 2000. This was revised in 1997 to 8,000 MW. In 2000 the actual wind installed in Europe was 12,887 MW three times higher than the figure set nine years previously.

In 1997 EWEA set a target of 40 GW installed in 2010 (the same target as the Commission White Paper) and 100 GW in 2020. In 2000 EWEA set a target of 60 GW in 2010 and 150 GW in 2020.

Three years later in 2000 EWEA revised its target to 60,000 MW by 2010 (including 5,000 MW offshore) and 150,000 MW by 2020 (including 50,000 MW offshore).

In 2003, EWEA further revised its target to 75,000 MW by 2010 and 180,000 MW by 2020 (including 70,000 MW offshore).

Today in 2005, EWEA has updated this target and extended the period to 2030, resulting in a total installation of 300 GW, 150,000 MW of this offshore.

С

Carbon Trust - Future of Marine Energy

Introduction Growth rates Costs Employment Conclusion

Future Marine Energy

Results of the Marine Energy Challenge: Cost competitiveness and growth of wave and tidal stream energy

Figure 15 Conclusions from growth model to 2020 across Europe

Potential resource and industry status

Wave and tidal stream energy have the potential for bulk electricity supply in the UK and worldwide. The potential energy resources are significant, particularly offshore wave energy. Between 15% and 20% of current UK electricity demand could be met by wave and tidal stream energy, which is equivalent to carbon dioxide abatements of several tens MtCO₂. Estimates of market size are approximate, but the market is likely to be sufficiently large to merit considerable interest in its commercial development.

	Wave energy	Tidal stream energy
Total installed capacity (MW)	1,000 to 2,500	1,000 to 2,500
Total capital deployed (£m)	1,000 to 2,500	1,000 to 2,500
NPV cost of support above base electricity cost (£m)	700 to 2,200	500 to 2,000
Annual carbon dioxide abatement (MtCO2/y)	1.0 to 3.3	1.0 to 3.7

BWEA – forecasts for marine energy

Introduction Growth rates Costs Employment Conclusion

Our Energy Challenge

Securing clean affordable energy for the long-term

BWEA's response to the 2006 UK Government Energy Review

April 2006

THE BRITISH WINDENERGY

BWEA - Championing the UK wind and marine renewables ind

Table D2. Capacity and energy estimates for wind and marine renewables

		2010		2020		Notes
		MW	TWh	MW	TWh	
Onshore	Lower	4,700		12,000		
	Upper	7,500		15,000		
	Baseline	6,220	16.35	12,500	32.85	1
	Percentage of supply		4.7%		8.8%	
Offshore	Baseline	1.500	4.60	11.500	35.26	1
onshore	Percentage of supply	1,000	1.3%	11,000	9 40%	-
	Percentage of supply		1.370		5.470	
Marine	Lower	70		2,000		
	Upper	70		5,000		
	Baseline	70	0.21	3,000	7.88	1
	Percentage of supply		0.06%	\sim	2.1%	
Micro & Mini	Micro				0.5	2
	Mini			1,200	2.10	1
	Percentage of supply				0.7%	
n the U	K requires	1 Dy 20	020		78.60 374	4
nstallat inits or veek	ion of 6 P equivaler	elamis nts per	S sh rti	iore her analysis	21.01%	
Assumi ate as d igure w	ng a simil offshore w vould be cl	ar gro /ind th loser t	wth nis to			

Coordinated Action on Ocean Energy – Theme 4

Introduction

Growth rates

Employment

Conclusion

Costs

First offshore wind farms

Location	Country	Installed	Year	Cumulative Installed	
	-	Capacity (MW)		Capacity (MW)	
Vindeby	Denmark	5	1991	5	
Lely ljsselmeer	The Netherlands	2	1994	7	
Tunø Knob Jutland	Denmark	5	1995	12	
Dronton ljsselmeer	The Netherlands	17	1997	29	
Bockstigen-Valor	Sweden	3	1998	32	
Blyth	UK	3.8	2000	36	
Middelgrunden Copenhagen	Denmark	40	2000	76	
Utgrunden	Sweden	10	2000	86	
Yttre Strengrund	Sweden	10	2001	96	
Samsø	Denmark	23	2003	119	
North Hoyle	UK	60	2003	179	
Horns Rev	Denmark	160	2003	339	
Nysted	Denmark	158.4	2003	497.4	
Arklow Bank	Ireland	25	2003	522.4	

Wind growth rates

Introduction Growth rates Costs Employment Conclusion

Introduction Growth rates Costs Employment Conclusion

Cumulative installed capacity, MW

Where learning can come from?

Introduction Growth rates Costs Employment Conclusion

Areas for cost changes within the ocean energy industry				
Part	Specific developments	Exogenous developments		
Device	Up-scaling Improved design Standardisation Economics of scale	Development in offshore wind Raw material prices		
Foundations/ Mooring	Standardisation Improved under-standing of loads Economics of scale	Raw material prices		
Grid connection	Standardisation of design Economics of scale	Advances in offshore wind Developments in high voltage DC interconnections		
Installation	Learning-by-doing Purpose built vessels	Vessel rental prices		

Learning Marine Energy

Costs of the first European offshore wind farms

Introduction Growth rates Costs Employment

Mechanical and electrical 49% electrical 39%

Tidal farm

Breakdown of costs – Employment multipliers

• Basis of Calculation

Wave farm

- Based on the breakdown of costs
- EU employment multipliers can then be assigned the different parts of the costs

Employment per million Euro

Wave farm

Introduction Growth rates Costs Employment

Conclusion

Direct Indirect Direct Indirect 5 4 4 Number of Jobs Number of Jobs 3 3 2 2 1 Device supply pply pply foundation cal supply foundation cal supply offshore electrical supply Nortam monitoring installation Preim & management Development expenses Preim & management Development expenses Onshore 6.5 direct 6.6 direct 3.0 indirect 4.0 indirect 9.5 total **10.6 total**

Tidal farm

Coordinated Action on Ocean Energy – Theme 4

Direct Employment

Direct jobs in device and foundation

Current estimate 10 jobs/MW 2020 estimate 3.5 jobs/MW

Total Employment

Introduction Growth rates Costs Employment Conclusion

Total direct and indirect jobs

Current estimate 19 jobs/MW 2020 estimate 7 jobs/MW

Introduction Growth rates Costs Employment

Conclusion

Conclusions

- Growth targets of over 500 MW by 2020 is plausible with strong growth in several different concepts
- Initial learning may be masked as devices are taken further offshore
- Direct jobs in device and foundation
 - Current 10 jobs/MW falling to 3.5 jobs/MW
- Direct jobs in device and foundation
 - Current 19 jobs/MW falling to 7 jobs/MW
- Total employment by 2020 could be between 2000 and 6000 assuming installed capacities of 500 MW 1500 MW